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The origin of orientation selectivity in visual cortical responses
is a central problem for understanding cerebral cortical circuitry.
In cats, many experiments suggest that orientation selectivity
arises from the arrangement of lateral geniculate nucleus (LGN)
afferents to layer 4 simple cells. However, this explanation is not
sufficient to account for the contrast invariance of orientation
tuning.

To understand contrast invariance, we first characterize the
input to cat simple cells generated by the oriented arrangement
of LGN afferents. We demonstrate that it has two components:
a spatial-phase-specific component (i.e., one that depends on
receptive field spatial phase), which is tuned for orientation, and
a phase-nonspecific component, which is untuned. Both com-
ponents grow with contrast.

Second, we show that a correlation-based intracortical cir-
cuit, in which connectivity between cell pairs is determined by
the correlation of their LGN inputs, is sufficient to achieve well
tuned, contrast-invariant orientation tuning. This circuit gener-
ates both spatially opponent, “antiphase” inhibition (“push—
pull”), and spatially matched, “same-phase” excitation. The
inhibition, if sufficiently strong, suppresses the untuned input
component and sharpens responses to the tuned component

at all contrasts. The excitation amplifies tuned responses. This
circuit agrees with experimental evidence showing spatial op-
ponency between, and similar orientation tuning of, the excita-
tory and inhibitory inputs received by a simple cell. Orientation
tuning is primarily input driven, accounting for the observed
invariance of tuning width after removal of intracortical synaptic
input, as well as for the dependence of orientation tuning on
stimulus spatial frequency.

The model differs from previous push—pull models in requiring
dominant rather than balanced inhibition and in predicting that
a population of layer 4 inhibitory neurons should respond in a
contrast-dependent manner to stimuli of all orientations, al-
though their tuning width may be similar to that of excitatory
neurons. The model demonstrates that fundamental response
properties of cortical layer 4 can be explained by circuitry
expected to develop under correlation-based rules of synaptic
plasticity, and shows how such circuitry allows the cortex to
distinguish stimulus intensity from stimulus form.
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Thirty-five years ago, Hubel and Wiesel (1962) discovered that
cells in cat primary visual cortex (V1) are tuned for the orienta-
tion of light/dark borders. The inputs to V1 come from the lateral
geniculate nucleus (LGN), whose cells are not significantly ori-
entation selective (Hubel and Wiesel, 1961). The origin of orien-
tation selectivity in visual cortex has been one of the most
thoroughly investigated questions in neuroscience and serves as a
model problem for understanding how the cortex processes and
represents information.

In cats, orientation selective responses appear in cortical layer
4. Cat layer 4 is composed of simple cells (Hubel and Wiesel, 1962;
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Gilbert, 1977; Bullier and Henry, 1979): cells with receptive fields
(RFs) composed of oriented subregions, each giving exclusively
ON or OFF responses (response to light onset/dark offset or light
offset/dark onset). Hubel and Wiesel (1962) proposed that the
orientation selectivity of these cells derives from an oriented
arrangement of inputs from the LGN: ON-center LGN inputs
have RF centers aligned over the simple cell’s ON subregions, and
similarly for OFF-center inputs. Such an input arrangement has
been confirmed experimentally (Tanaka, 1983; Reid and Alonso,
1995). Because the total LGN input grows with increasing con-
trast for stimuli of all orientations, this model by itself is insuffi-
cient to explain the invariance of orientation tuning under change
in stimulus contrast (Sclar and Freeman, 1982; Skottun et al.,
1987). A threshold for spiking responses might narrow the tuning
at any one contrast, but higher contrast would require a higher
threshold to prevent broadening of tuning.

Two major approaches to achieving contrast invariance have
been proposed. Many authors have suggested that responses in
simple cells are approximately linear, i.e., the response can be
predicted by linear summation of stimulus luminance (relative to
background), weighted by the cell’s RF (Movshon et al., 1978;
Glezer et al., 1982; Tolhurst and Dean, 1990; Albrecht and
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Geisler, 1991; Heeger, 1992; Carandini and Heeger, 1994; Car-
andini et al., 1997, 1998). Contrast change in such a model simply
multiplies responses by a constant; contrast-invariant tuning fol-
lows automatically. It has been proposed that linear responses
might be achieved by a balanced “push—pull” arrangement of
inputs, in which an ON subregion shows equal excitation (push) to
light stimuli as inhibition (pull) to dark stimuli, and conversely for
OFF subregions (Glezer et al., 1982; Tolhurst and Dean, 1990;
Carandini and Heeger, 1994; Carandini et al., 1997, 1998). How-
ever, there are two problems with achieving linear response in an
actual neural circuit. First, spike thresholds are non-zero, and
therefore oriented stimuli that at low contrast give positive but
subthreshold input would yield spike responses at higher contrast.
Second, at contrasts above ~5%, LGN responses increase more
than they decrease, because spike rates cannot decrease below
zero (i.e., responses “rectify”). This input nonlinearity alters the
balance between push and pull.

Other authors have proposed that orientation tuning emerges
from orientation-specific short-range excitation and longer-range
inhibition in cortex (Ben-Yishai et al., 1995; Somers et al., 1995),
despite evidence that in cat layer 4, excitation and inhibition show
similar orientation tuning (Ferster, 1986). The width of orienta-
tion tuning in these models is an emergent property of intracor-
tical circuitry, and so it does not depend on the parameters of the
stimulus, including stimulus contrast. These proposals appear
inconsistent with the fact that orientation tuning widths in cats do
depend on at least one stimulus parameter: the spatial frequency
of sinusoidal grating stimuli (Vidyasagar and Siglienza, 1985;
Webster and De Valois, 1985; Jones et al., 1987, Hammond and
Pomfrett, 1990).

We propose a new model for cat layer 4 cortical circuitry that
yields contrast-invariant orientation tuning. Our model examines
two basic questions. First, what is the nature of the thalamocor-
tical input to cortical simple cells? We assume that thalamocor-
tical connectivity can be modeled by a Gabor function: a two-
dimensional Gaussian multiplied by a sinusoid (Jones et al., 1987;
Reid and Alonso, 1995). The spatial phase of the sinusoid deter-
mines the location of ON and OFF subregions within the
thalamocortical RF. Using a simple model of LGN responses, we
show that the total LGN input has two components: a spatial-
phase-specific component (a component that varies with the spa-
tial phase of a cell’s RF) that is tuned for orientation, and a
phase-nonspecific component that is entirely untuned. Both com-
ponents grow with contrast. Separating these input components
helps clarify the debate over whether the LGN input to simple
cells is well or poorly tuned. In response to drifting gratings, the
phase-specific component corresponds to the temporally modu-
lated input component, which Ferster et al. (1996) recently dem-
onstrated to be tuned. However, the total input includes the
phase-nonspecific, temporally unmodulated component; this
should be untuned and was not measured by Ferster et al. (1996).
Separating the input components also clarifies the problem that
cortical circuitry must solve to achieve contrast-invariant orien-
tation tuning: eliminating the untuned component of the LGN
input in a contrast-dependent manner while extracting and sharp-
ening the tuned component.

Second, what patterns of intracortical connectivity are sufficient
to yield contrast-invariant orientation tuning? We arrive at a
surprisingly simple answer: “correlation-based” connectivity
yields contrast invariance. By correlation-based connectivity we
mean that intracortical connection strengths between two cells
are fixed on the basis of the correlation in their thalamocortical

J. Neurosci., August 1998, 78(15):5908-5927 5909

RFs. Thus, inhibitory connections occur between cells with anti-
correlated RFs, whereas excitatory connections occur between
cells with correlated RFs. The “antiphase” inhibition eliminates
the untuned input component and sharpens responses to the
tuned component, whereas “same-phase” intracortical excitation
amplifies the tuned response. As a result, our model achieves
contrast-invariant tuning in the presence of positive thresholds
and LGN rectification.

Our model uses a form of push—pull circuitry but differs from
other such models in that inhibition dominates rather than bal-
ances excitation, and responses are not linear. Furthermore, we
predict that a population of inhibitory neurons in cat layer 4
should respond in a contrast-dependent manner to stimuli of all
orientations, although they may be tuned for orientation. The
model has both developmental and functional implications for
understanding the layer 4 cortical circuit, and suggests a general
means of separating stimulus intensity (here represented by con-
trast) from stimulus form (represented by orientation).

This work has been published previously in abstract form
(Krukowski et al., 1996).

MATERIALS AND METHODS

We study both a very simple (“conceptual”) model and a more realistic
(“computational”) model. We first present the elements common to both,
and then present each model.

Elements common to both conceptual and
computational models

LGN model. Our model was based on cat V1 at ~5° eccentricity. LGN
spatial RFs were center-surround difference of Gaussians, with cells
responding either to light onset (ON cells) or light offset (OFF ce]ls) in
their RF centers, LGN spatial filter parameters [(17/0% e, )e /7% —
(16/0-52urround)e *X‘/G’s‘urmund; Ocenter — 15,5 Osurround — 10] were taken from
Peichl and Wassle (1979) and Linsenmeier et al. (1982). Firing rates in
response to sinusoidal gratings were calculated on the assumption of
linear rectified responses (unrectified firing rate was a sinusoid of the
same temporal frequency as the stimulus; negative rates were then set to
zero), using contrast-response curves from Cheng et al. (1995) (see Fig.
1). Assuming background firing rates of 10 Hz (ON cells) and 15 Hz
(OFF cells) [modified from Kaplan et al. (1987), considering the lower
mean luminance of 20 cd/m? used in Cheng et al. (1995)], we calculated
the sinusoidal amplitude that would lead to the reported values of the
first harmonic (F1) after rectification. [Throughout, we will use F1 to
denote the amplitude of the sinusoidal component at the frequency of the
grating stimulus, although this value is twice as large as the value
obtained using the Fourier transform normalized so that the FO or DC
component is the mean level (Skottun et al., 1991)]. The amplitudes were
then fit to R = R,,,C"/(C5, + C"), where R is response amplitude and
C is contrast (ON cells: R, = 53.0 Hz, n = 1.20, C5, = 13.3%; OFF
cells: R, = 48.6 Hz, n = 1.29, C5, = 7.18%). LGN responses for
gratings of nonoptimal spatial frequencies were calculated by reducing
modulation amplitudes by the factor predicted from the application of
LGN spatial filters. ON and OFF cells had temporal phases offset by 180°.
To calculate the firing rates in response to moving bars, LGN cell
spatiotemporal RFs were used. Temporal filters were taken from the
central RF pixel in reverse correlation data from 100% contrast
M-sequences (supplied by R. C. Reid, Harvard Medical School); center
and surround temporal filters were assumed equal for simplicity.
Cortical receptive fields. Cat cortical layer 4 simple cell RFs were
modeled as Gabor functions (see Fig. 24). A Gabor function is a
two-dimensional Gaussian, here with peak value 1, multiplied by a
sinusoid. Positive regions of the Gabor correspond to ON subregions and
yield connections from ON-center LGN cells, and negative regions
correspond to OFF subregions and yield OFF-center inputs; the strength
of the connection depends on the magnitude of the Gabor. The number
of subregions is defined as the ratio of the width of the Gaussian envelope
(at 5% of peak) to the width of a half-cycle of the sinusoid. The aspect
ratio of a single subfield is defined as the ratio of the Gaussian envelope
length to the sinusoid half-cycle width. Two sets of Gabor parameters
were used. “Default” parameters were the mean values for simple cell
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physiological RFs reported in Jones and Palmer (1987): 2.65 subregions
and an aspect ratio of 4.54. (Care must be taken when comparing these
numbers with other experimental estimates, e.g., using a 10% cutoff for
the Gaussian reduces these numbers by nearly one-fourth.) All RFs have
0.625° half-cycle width, corresponding to a spatial frequency of 0.8
cycles/degree, the approximate mean preferred spatial frequency of
cortical cells at 5° eccentricity (Movshon et al., 1978). Gaussian 5%
envelope length and width are equal to 2.84 and 1.65°, respectively. The
measurements of Ferster et al. (1996) suggest that the net LGN input to
a simple cell has broader orientation tuning than results from the default
parameters (see Results). To model this broader tuning, we used a
second set of Gabor parameters, identical to those above except that the
Gaussian envelope was compressed by a factor of 0.7 in both length and
width. This yields 1.85 subfields, a subfield aspect ratio of 3.18, and a 5%
envelope length and width of 1.99 and 1.15°, respectively.

Conceptual model

To explore the basic concepts underlying our results, we constructed a
conceptual model designed to be as simple as possible. The model
contains two “rate-coded” cortical neurons, one excitatory and one
inhibitory; the inhibitory cell inhibits the excitatory cell. The activity of
each cell is represented by a scalar value corresponding to average firing
rate. The LGN was modeled as a uniform sheet of cells, approximated as
a dense lattice (lattice spacing = 0.05°). The two cortical RFs were
determined by Gabor RFs with identical Gaussian shape and location but
having sinusoids of opposite spatial phase (thus, the inhibitory cell
provides antiphase inhibition).

For computational convenience in obtaining orientation tuning curves,
rather than showing many gratings to one pair of cells, we showed one
grating to many independent cell pairs. Thus, we constructed multiple
pairs of cortical RFs with identical retinotopic positions and with orien-
tation and spatial phases spaced at 10 and 20° intervals, respectively.

For each time step, we first calculated the LGN input to each RF by
summing LGN firing rates, weighted by the Gabor function, to give the
excitatory input 4(6, ¢) to the cell of orientation 6 and phase ¢. The net
input to an excitatory cell with parameters (6, ¢) was the weighted sum
A(6, ¢) — wA(6, ¢ + 180°); A(H, ¢ + 180°) is the LGN input to the
(inhibitory cell) RF having the same orientation but opposite (180°
difference) spatial phase. The inhibitory gain factor w is unitless and
represents the transformation from LGN excitatory current to inhibitory
spike rate to inhibitory current in the excitatory cell. w is the only free
cortical parameter in this model and controls the width of orientation
tuning (see Fig. 5). A match to experimental tuning widths of ~20° is
given by w = 1.5 for default Gabor parameters (see Figs. 4, 7), and w =
4.5 for broadly tuned Gabor parameters.

The output rate of an excitatory cell was obtained by thresholding
the net input, i.e., spike rate is proportional to [4(6, ¢) — wA(6, ¢ +
180°) — &]*. For each set of Gabor parameters, the threshold £ was set
automatically according to the following algorithm (thus, £ is not a free
parameter). For a given level of inhibition w, orientation tuning curves
were constructed by determining the peak input over a stimulus cycle for
cells of each orientation preference, averaged over cells of all spatial
phases. Such curves were obtained for gratings of 5, 10, 25, and 50%
contrast. Linear interpolation was used to sample these tuning curves at
0.1° intervals, and the orientation that gave the smallest variance in peak
input across contrasts was determined (see Fig. 7). The threshold &(w)
was then set to the average across contrasts of the peak input for that
orientation and level of inhibition. The excitatory cell’s total response
was determined by integrating its activity (calculated every 10 msec) over
the course of one cycle. A single stimulus cycle was sufficient because the
conceptual model is completely deterministic.

The inhibition level w, ., that gave a best match to experimental tuning
widths (w = 1.5 or w = 4.5 depending on Gabor parameters, as just
described) was determined by constructing tuning curves for a range of w.
Note that by the procedure just described, each value of w yields a
different threshold &w). To test the robustness of the model to variations
in w (see Fig. 5), for each set of Gabor parameters, we fixed £ to the level
appropriate for wy., and calculated all responses using this fixed
threshold.

Computational model

Most simulations were carried out in a computational model incorporat-
ing details of cortical cells and maps.

Computational LGN model. For the computational model, a realisti-
cally dense lattice of LGN cells was used. We restricted our attention to
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LGN X-cells, which dominate central cat V1 physiology (Ferster, 1990).
At 5° of eccentricity, ] mm? = 5 X 5° of visual field in retina (Bishop et
al., 1962) and retinal ganglion X-cells (X-RGCs) have density 1000/mm?*
(Peichl and Wassle, 1979), including both ON and OFF cells. We assume
that each X-LGN cell receives input from a single X-RGC and each
X-RGC projects to four X-LGN cells [as in Worgotter and Koch (1991);
this value is intermediate between values from Sherman (1985) and
Peters and Yilmaz (1993)]. We thus use 7200 LGN cells to cover 6.8 X
6.8° of the visual field, arranged in four overlying sheets of ON cells
(30 X 30 cells each) and four sheets of OFF cells (30 X 30), with ON and
OFF lattices offset by one-half lattice spacing. After LGN spike rates
were calculated as above, spikes were produced in a random (Poisson)
fashion: firing rates were converted into the probability of producing a
spike in each simulated time step (0.25 msec). To match data showing
correlations among LGN cells with overlapping RFs (Alonso et al.,
1996), overlaying cells had 25% correlations in their spike trains (each of
four overlaying cells picked spikes with probability one-fourth from a
common set of four Poisson processes). These correlations made no
detectable difference in model behavior.

The connection strength to a given cortical cell from each LGN cell
was determined by a repeated probabilistic sampling of the Gabor
function descrlblng the cortical RF (see Flg 2B). LGN synaptic strengths
were equal to (gex/nplck)E"P‘Ckp where nfl ., = 3, g% =089 nS, and p; =
1 with probability determined by the absolute value of the Gabor func-
tion; p; = 0 otherwise. The number of pleS nplck, determines the degree
of sampling of the Gabor function: for npmk — o, the RF becomes a
perfect Gabor function. A typical sampled RF is shown in Figure 2B.
With this sampling, cortical cells received input from 125 = 8 (mean *
SD) LGN cells using the default Gabor. Using the more broadly tuned
Gabor, cortical cells received input from 61 = 5 LGN cells.

Cortical model. Cortical cells were modeled as simple integrate-and-
fire neurons as described in Troyer and Miller (1997a,b), with parameters
matched to experimental data from McCormick et al. (1985). Excitatory
cells were fitted to responses from regular spiking cells, and inhibitory
cells were fitted to responses from fast spiking neurons. Briefly, each cell
is a single compartment with a capacitance C, leak conductance g .,
resting potential V)., and two synaptic conductances: fast (AMPA)
excitation, g, (reversal potential V., = 0 mV), and fast (GABA-A)
inhibition, g, (V;, = —70 mV). Excitatory cells also have a spike-
trlggered adaptatlon conductance g,qape (Vagape = —90 mV). Each time
varying conductance, g, is modeled as a difference of exponentials: g(r) =
S, 8le O L ), where the sum is over spike times ¢
(presynaptic spike tlmes for gey, gin; postsynaptic for g,q.,)- When V
crosses threshold, Vi,..sn = —52.5 mV, synaptic events are triggered after
a delay (randomly chosen for each spike from a uniform distribution, 0.25
mSsec = f.1,, = 2.25 msec), adaptation is triggered (excitatory cells only),
and V is set to V. and held there for f . ac- Vieser Was fit to the
experimentally measured DC gain of cortical cells [the curve of firing
rate vs level of DC injected current (Troyer and Miller, 1997a,b)]. All
cells receive nonthalamocortical background excitatory input (Poisson
with a mean rate of 5800 Hz and synaptlc conductances equal to g%¢). The
magnitude of this input was set to give low mean background firing rates
for excitatory cells (0.16 Hz) at default values of the parameters; identical
background input was given to inhibitory cells and resulted in mean
background firing rates of 12.2 Hz. Parameters are as follows for excita-
tory cells: C = 500 pF, gieax = 25 1S, Ve = —73.6 mV, V, o = —56.5
mV, fepae = 1.5 msec; for inhibitory cells: C = 214 pF, g, = 18.0 nS,
Vieak = =816 mV, Vioiop = —57.8 mV, f,p = 1.0 msec; for conduc-
tances: 7% = 0.25 msec, 7' = 1.75 msec, 7.%¢ = (.75 msec, ral = 525
msec, T!;dapt = 1 msec, adlapt = 83.3 msec, §yqape = 3 1S, 2% = 0.89 nS. g,
g%, and g;, were free parameters and set as described below.

The model contains 1600 excitatory and 400 inhibitory layer 4 simple
cells, representing a %3 X %3 mm patch of cortex and 0.75 X 0.75° in visual
angle [0.9 mm = 1° of visual field at 5° eccentricity (Tusa et al., 1978)].
A 20 X 20 grid of inhibitory cells was interspersed within a 40 X 40 grid
of excitatory neurons, with each inhibitory RF center aligned with every
other excitatory cell. Gabor-shaped RFs were defined by three parame-
ters in addition to those described above: preferred orientation, deter-
mined by an optically measured cortical map from cat V1 [provided by
Michael Crair and Michael Stryker (University of California, San Fran-
cisco); shown in Fig. 8A4]; retinotopic position, progressing uniformly
across the sheet; and spatial phase, assigned randomly to each cell
(DeAngelis et al., 1992; Ghose et al., 1993).

The probability that any two cortical cells were connected depended
on the correlation between their RFs. The following scheme was used for
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both excitatory and inhibitory connections. Raw correlation ¢'(a,b) be-
tween RFs of cortical cells a, b is ¢'(a, b) = Z;;q.6n 8(, a)g(j, b)c(i, j)-
Here, i,j are LGN cells, g(i, ) and g(j, b) are the thalamocortical weights
from i to @ andj to b, and ¢(i, j) is the cross-correlation of the spatial RFs
of i and j, where OFF spatial RFs are negative of ON. Correlation is then
c(a,b)=c'(a,b)/N ¢ (a,a)c’ (b,b). A connectivity function C(a, b)—
roughly, the probability of a connection from a to b—is defined as C(a,
b) = [sgn(a)c(a, b)™*]" where sgn(a) = 1 if a is excitatory, —1 if a is
inhibitory; [x]" = x,x > 0, [x]" = 0 otherwise. n,,, is a parameter that
determines connectivity strength as a function of correlation. Smaller
values of n,,,, lead to broader connectivity and more intracortical con-
nections per cell; larger values have the opposite effect (see Fig. 8 B). At
the default value, n,,, = 6, a cortical cell receives connections from
132 = 38 (mean *= SD) other cortical cells (80% from excitatory
cells, 20% from inhibitory cells, on average). Just as the thalamocor-
tical connections were sampled from the Gabor function, the intracorti-
cal connections were sampled from C(a, b): the strength of intracortical
connection from a to b, g(a, b), is g(a, b) = (g/nc )P p,, where p; =
1 with probability C(a, b) (8 = g&x* 01 & = Zin» N = 10). As gy — o,
the connectivity becomes exactly gC(a, b).

The main parameters controlling model behavior were the total syn-
aptic strength for each type of connection: thalamocortical (LGN), in-
tracortical excitation (e — {e, i}), and intracortical inhibition onto
excitatory cells (i — e). The total synaptic strength is obtained by (1)
assuming the cell is voltage-clamped at threshold; (2) for each synapse,
integrating over time the synaptic current induced by one presynaptic
spike; and (3) summing over all synapses of the given type. Thus, total
synaptic strength is expressed in units of nanoampere millisecond. The
parameters were chosen to satisfy various experimental constraints such
as orientation tuning width. We used two different parameter sets: the
“feedforward” set with LGN and intracortical inhibitory connections
only, and the “full circuit” set, which also included feedback intracortical
excitation. For simplicity, inhibitory cells received only excitation; we
have not yet explored the influence of inhibitory-to-inhibitory connec-
tions. For most simulations, the total intracortical excitatory synaptic
strength onto each excitatory cell (¢ — e connections) and onto each
inhibitory cell (e — i connections) was identical. Some simulations were
run with intracortical excitatory connections onto excitatory cells only
(e — e, but no e — i). After the pattern of synaptic strengths was
determined by probabilistic sampling, synaptic conductances were mul-
tiplicatively scaled so that the total conductance from each synaptic type
received by each cell was set to its respective mean across cells. This
avoids large differences in the amount of input to different cells resulting
from the unequal representation of orientations in our spatially limited
sample of an orientation map. For the feedforward parameter set (see
Figs. 3, 4, 7), total synaptic strengths received by a cell from each type of
connection were 10 nA msec (LGN) and 3.75 nA msec (i — e), yielding
mean values for unitary conductances of g% = 2.1 nS, g;, = 8.3 nS. For
the full circuit parameter set (see Figs. 8-12), total synaptic strengths
received by a cell from each type of connection were 5 nA msec (LGN),
4.25 nA msec (e — {e, i}), and 7.5 nA msec (i — ¢), yielding mean values
for unitary conductances of g&* = 2.0 nS, g%, = 1.0 nS, and g;,, = 16.6 nS.
The effects of varying these values were also explored (see Fig. 13). Note
that we have realistic numbers of LGN cells but unrealistically small
numbers of cortical cells; therefore, intracortical connections are unre-
alistically strong relative to thalamocortical.

Simulations. A typical simulation consisted of three cycles of a 3 Hz
sinusoidal grating. During each time step (0.25 msec), values for time-
varying conductances were updated, and the membrane time constant
and the equilibrium voltage for each cell were then calculated from the
cell’s conductances. Each cell’s voltage was then adjusted according to an
exponential decay. Finally, threshold crossings were detected, and sub-
sequent synaptic, adaptation, and refractory events were registered.
Simulations were written as C subroutines (mex files) in the MATLAB
simulation environment. Initial conditions were determined by simulat-
ing 1 sec of model behavior at default parameter values and with LGN
cells at background firing rates.

All orientation preferences are represented in the cortical network.
Orientation tuning curves were constructed from the presentation of a
single stimulus, by binning responses from all cells in the network
according to their preferred orientation in 10° bins. Most results used as
a stimulus a grating oriented at 128°. This orientation was chosen to
avoid artifacts that might result from alignment of the stimulus with the
axes of the LGN grid, but we saw no evidence of such behavior.

When displaying synaptic conductances and currents, we show
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“stimulus-induced” curves in which we have subtracted the mean values
of these conductances and currents at background. These mean values
were determined by running “blank stimulus” trials in which LGN firing
rates were unmodulated.

To reproduce the results of Nelson et al. (1994), we ran simulations in
which the inhibition and adaptation currents were blocked in a single cell
(see Fig. 12). To accomplish this in a computationally convenient way, we
ran a single simulation without any blockade, but monitored the behavior
of an additional “blocked cell” for each cell in the network. The blocked
cell made no connections. It received identical excitatory input as its
unblocked partner cell, but had no inhibitory or adaptation current and
was injected with sufficient hyperpolarizing current to bring the back-
ground firing rates back to normal. Thus each blocked cell received input
from a network in which all other cells were normal (unblocked), but did
not itself affect any other cells in the network. Under the assumption that
altering a single cell does not affect network behavior, this method allows
us to simulate numerous experiments in which one cell undergoes intra-
cellular inhibitory blockade.

RESULTS

Modeling approach

We pursued two parallel approaches to modeling contrast-
invariant orientation tuning. To explore the basic ideas underly-
ing such tuning, we constructed a conceptual model, designed to
be as simple as possible. This model considered two cortical
simple cells, one excitatory and one inhibitory, with a monosyn-
aptic connection from inhibitory to excitatory. The RFs of the two
cells had identical position and preferred orientation but opposite
spatial phase (see Materials and Methods). The neurons were
“rate-coded”: the average firing rate of each cell was determined
by a linear thresholding operation applied to the weighted sum of
input cell firing rates. For simplicity, the inhibitory threshold was
set to zero (i.e., the inhibitory cell’s response was a linear function
of its input). The excitatory cell’s threshold was set automatically
to the level that best produced contrast-invariant tuning for
contrasts of 5% and above (see Materials and Methods). There-
fore, after the structure of the cortical receptive fields was deter-
mined, the conceptual model had only a single free parameter:
the strength of intracortical inhibition relative to the strength of
thalamocortical excitation.

To study the robustness of our ideas to the complexity of real
cortical circuits, we also constructed a computational model that
incorporated known details of cortical cells and maps. The cor-
tical component of this model consisted of 1600 excitatory and
400 inhibitory layer 4 simple cells, arranged in a %3 X % mm
cortical sheet. Preferred orientations were determined by a mea-
sured V1 map, and intrinsic connectivity was determined proba-
bilistically based on correlations in input RFs. Excitatory and
inhibitory cells were modeled as conductance-based integrate-
and-fire neurons, with parameters matched to those measured in
cortical regular-spiking and fast-spiking cells, respectively, in-
cluding a spike-rate adaptation current in the excitatory cells
(McCormick et al., 1985; Troyer and Miller, 1997a,b) (details
in Materials and Methods). We considered only the effects of
fast synaptic conductances (AMPA and GABA-A); the role of
slow conductances (NMDA and GABA-B) will be explored in
future work.

LGN input

We focused our research on the response to full-field sinusoidal
gratings, because these are the only stimuli for which contrast
dependence of orientation tuning has been studied (Sclar and
Freeman, 1982; Skottun et al., 1987). Our model was based on cat
V1 at ~5° eccentricity. Circularly symmetric, center-surround
LGN spatial receptive fields were used (Peichl and Wassle, 1979;
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Figure 1. LGN cell responses to 3 Hz, 0.8 cycles/degree moving gratings.
A, Instantaneous firing rate. Straight line is background. B, Contrast
response functions. Top shows amplitude of first harmonic (F1); bottom
shows mean (DC) firing rate. The mean rate increases at contrasts >5%,
attributable to rectification as seen in A. Data modified from Cheng et al.
(1995) (see Materials and Methods).

Linsenmeier et al., 1982), and LGN firing rates were determined
as rectified linear filterings of the input luminance using experi-
mentally measured contrast gain curves (see Materials and Meth-
ods) (Fig. 1B) (Peichl and Wassle, 1979; Cheng et al., 1995). To
determine whether our model would yield well tuned responses to
transient stimuli, we also modeled responses to moving bars.

LGN cells responded to sinusoidal grating stimuli with a sinu-
soidal modulation in firing rate (Fig. 14). The temporal responses
of ON-center and OFF-center cells with spatially overlapping
RFs were 180° out of phase. Increasing the stimulus contrast
resulted in a larger modulation of firing rate. At contrasts above
~5%, the spike rate modulation exceeds the background firing
rate. For these contrasts, responses are no longer purely sinusoi-
dal, because spike rate cannot be negative (Fig. 14, solid lines);
that is, LGN responses rectify. Once responses rectify, mean
(DC) firing rates increase with increasing contrast (Fig. 1B, DC
curves), because peak firing rates continue to increase and mini-
mal firing rates cannot decrease below zero. This contrast-
dependent increase in mean LGN firing rates has important
consequences for contrast-invariant orientation tuning that will
be discussed in detail below.

The oriented arrangement of LGN inputs to simple cell RF
subregions was modeled using a Gabor function, a two-
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Figure 2. Gabor-shaped cortical RFs. Lighter grays to white indicate
positive values of Gabor function, corresponding to weights of ON-center
LGN cells with centers at corresponding spatial positions; darker grays to
black indicate negative values of Gabor function, corresponding to
weights of OFF-center cells. A, A full Gabor function, used to determine
LGN inputs to a cortical cell in the conceptual model. B, Typical LGN
inputs to a cortical cell in the computational model, after probabilistic
sampling from the full Gabor (see Materials and Methods). These recep-
tive fields are typical; different cortical cells may have different preferred
orientations, spatial phase (relative locations of ON or OFF subregions),
spatial location, and, in the computational model, different outcomes of
the probabilistic sampling. Spatial frequency of sinusoid in Gabor func-
tion is 0.8 cycles/degree.

dimensional Gaussian multiplied by a sinusoid (Fig. 24). In the
conceptual model, the Gabor function directly determined the
weights of geniculocortical connections: positive values corre-
sponded to the weights of ON-center inputs, negative values to
the weights of OFF-center inputs. In the computational model,
geniculocortical synaptic strengths were determined by probabi-
listic sampling of the Gabor function from a realistically dense
lattice of LGN cells (Fig. 2B).

We considered two different sets of Gabor parameters to de-
scribe geniculocortical connections. The first set was matched to
RF parameters taken from physiological measurements of cat
simple cells (Jones and Palmer, 1987). The use of the Jones and
Palmer parameters as a measure of LGN connectivity in simple
cells is based on the experiments of Reid and Alonso (1995),
which show that physiological RF parameters at least roughly
correspond to the pattern of geniculocortical connections in cat
layer 4. These will be used as our “default” parameters. We also
considered a second set of parameters representing more broadly
tuned LGN input, for several reasons. If cortical circuitry plays a
significant role in sharpening simple cell orientation tuning, then
the LGN input to a cell would have broader tuning than the cell’s
responses. Furthermore, the parameters of Jones and Palmer
(1987) represent an average of simple cells from all layers,
whereas layer 4 cells may be, on average, more broadly tuned for
orientation than other layers (Tolhurst and Thompson, 1981). We
base our more broadly tuned parameter set on the experiments of
Ferster et al. (1996), who cooled the cortex to largely eliminate
cortical inputs. Using intracellular electrodes, they then measured
the direct LGN input for gratings presented at 30° intervals. The
tuning of this input was quantified by measuring the first har-
monic (F1) of the voltage response, as a function of stimulus
orientation. Although orientation was sampled only coarsely, the
figures presented in Ferster et al. (1996) show average orientation
tuning half-width at half-height (HWHH) of ~35°. This is sig-
nificantly broader than the input F1 tuning under our default
Gabor parameters, which we find to be 24°. To mimic the broader



Troyer et al. « Model of Contrast-Invariant Orientation Tuning J. Neurosci., August 1998, 78(15):5908-5927 5913

Null Stimulus B

>

s —— DC+F1 (Peak Conductance)
2 - —-DC
S s A 6
[¢h} s
) 100 200

e | W W
s 3 \ 3
= !,k .
Mt et
o "'*‘:""‘ ‘ V"*~l!d Null 2.5% Ot tAt= — — — = 2.5%
5 \‘Iﬂv"f“w )‘fﬂ W YR Pref. 2.5%
= Wt Uash! Pref. 50%
-3 , , , , -3 , , )

0 100 200 300 400 500 60 -30 0 30 60

Time (msec) Orientation (degrees)

Figure 3. Tuning of total LGN input. 4, Input to cortical cells in response to high (50%) and low (2.5%) contrast gratings at the preferred and null
(orthogonal to preferred) orientations. High (50%) contrast and low (2.5%) contrast are shown. Curved traces show input in response to preferred
orientation; black traces, average input (40 presentations) from computational model, using a sampled Gabor RF (as in B); gray curves, input for
conceptual model, using connections from the full Gabor function (A). Gray straight lines show response in the conceptual model to a stimulus at the
null orientation; in inset, these lines are repeated and compared to average input to null stimuli in computational model (black traces). Note that input
to null stimulus at 50% contrast typically exceeds peak input to preferred stimulus at 2.5% contrast. Agreement of the two models for both preferred
and null stimuli indicates that RF sampling and Poisson firing of LGN inputs have little effect. B, Tuning of mean (dashed lines) and mean plus first
harmonic (solid lines) of thalamic input conductance. Lines show results from the conceptual model; solid circles show results from the computational
model; error bars represent £1 SD. Sum of mean plus first harmonic represents peak input during a cycle of the grating stimulus. Note that mean input
is untuned for orientation, and mean input at high contrasts exceeds peak input to preferred orientation at low contrasts. Thus, although the first
harmonic is well tuned, no single spike threshold can give tuned responses at both high and low contrasts. In this and subsequent figures showing
orientation tunings, cells are grouped by preferred orientation in 10° bins, and orientation axis represents difference of stimulus orientation from

preferred.

tuning observed by Ferster et al. (1996), we artificially shrunk the
default RFs by a factor of 0.7, leaving the width of each subregion
unchanged. This resulted in an input F1 tuning width of 34.8°.

In the conceptual model, the excitatory and inhibitory cells had
identical Gabor RFs, except that their sinusoids were 180° out of
phase. In the computational model, a distribution of receptive
fields was obtained from variations in three parameters: preferred
orientation, determined by a measured cortical map (see Fig. 84);
retinotopic position, progressing uniformly across the sheet; and
spatial phase, assigned randomly to each cell (DeAngelis et al.,
1992).

Tuning of the LGN input to a simple cell

At the preferred orientation, the bright and dark portions of a
sinusoidal grating stimulus align with the cortical cell’s ON and
OFF subregions simultaneously. Thus, all of the cortical cell’s
LGN inputs fire relatively synchronously and the temporal mod-
ulation of this input is large (Fig. 34). At the null orientation, the
inputs are stimulated asynchronously, so the temporal modula-
tion of the total input is small. Note that the mean rate of LGN
input does not depend on stimulus orientation. This follows from
the assumption that LGN cells are untuned for orientation: be-
cause the mean LGN input received by a simple cell is the
(weighted) sum of the mean rates of the LGN cells projecting to
it, this mean input must also be untuned for orientation (Ferster,
1987). Therefore, only the temporally modulated component of
the LGN input is orientation-tuned.

The untuned mean input presents the primary problem for a
purely thalamocortical explanation of contrast-invariant orienta-
tion tuning. As a result of LGN rectification, mean LGN firing
rates increase with increasing contrast (Fig. 1). This contrast-
dependent increase in firing rate is sufficiently large that the mean
LGN input at the null orientation at high contrasts exceeds the

peak LGN input at the preferred orientation at low contrast (Fig.

3). No single-spiking threshold level can yield well tuned re-
sponses for stimuli of all contrasts.

Therefore, to achieve contrast-invariant orientation tuning in
response to sinusoidal gratings, the cortex must cancel the un-
tuned, mean input component in a contrast-dependent manner,
while it extracts the tuned, modulated component. We will show
that this decomposition of the input into a tuned and an untuned
component generalizes to stimuli such as flashed and moving bars.

Antiphase inhibition can achieve contrast-invariant
orientation tuning

The main purpose of this paper is to demonstrate that
correlation-based intracortical inhibition can achieve contrast-
invariant orientation tuning (the effects of correlation-based in-
tracortical excitation will also be considered below). By
correlation-based inhibition, we mean that the probability of a
connection from an inhibitory cell to an excitatory cell is an
increasing function of the degree of anticorrelation between their
RFs, i.e., the strongest inhibitory connections are made between
cells with the most anticorrelated RFs (see Materials and Meth-
ods). This implies that an excitatory cell receives the strongest
inhibition from inhibitory cells with identical Hubel-Wiesel RFs
but of opposite spatial phase. We will call such an inhibitory
neuron the cell’s “antiphase partner.” (By “spatial phase” of an
RF, we refer to absolute position in visual space of the ON or
OFF subregions, rather than to their position relative to each
cell's Gabor function; thus, two RFs have “opposite spatial
phase” if the ON subregions of one tend to overlap the OFF
subregions of the other in visual space.) The existence of such
“spatially opponent” or antiphase inhibition in cat layer 4 is well
supported experimentally: at ON locations, where a light stimulus
evokes excitation (EPSPs), dark stimuli evoke inhibition (IPSPs),



5914 J. Neurosci., August 1998, 718(15):5908-5927

>

Computational Model

12}
i 10}
o 8
N
S 6f
Q
g 4t
o
2.
0 i 1
-60  -30 0 30 60
Orientation (degrees)
B Conceptual Model
(]
(%]
c
o]
Q.
(23
(O]
o
°
(0]
N
©
£
(@]
pd

-60  -30 0 30 60
Orientation (degrees)

Figure 4. Contrast-invariant tuning. Response versus orientation for
gratings of 2.5, 5, 10, 25, and 50% contrast. A, Computational model.
B, Conceptual model. Both models yield contrast-invariant tuning at 5%
contrast and above.

and vice versa for OFF locations (Palmer and Davis, 1981;
Ferster, 1988; Hirsch et al., 1995). Note that because simple cells
with orthogonal orientation preference have weakly correlated or
uncorrelated RFs, correlation-based connectivity results in little
or no inhibition from cells with orthogonal tuning. Instead, inhi-
bition comes from cells with similar preferred orientations.

Our model is not a developmental model: we first determined
the pattern of LGN input to cortical cells and then fixed the
pattern of intracortical connections according to the above
correlation-based rule. However, this pattern of inhibition would
be expected to arise from a Hebb-type synaptic modification rule,
generalized to apply to inhibitory synapses. Such a rule states that
synaptic strengths grow more negative (more strongly inhibitory)
when presynaptic and postsynaptic firings are anticorrelated, or
equivalently, that synapses strengthen when they are effective,
i.e., when the inhibitory presynaptic cell is active and the postsyn-
aptic cell is inactive. Such generalization of Hebb-type learning
rules to inhibitory synapses is only a hypothesis; plasticity of
inhibitory synapses is not well understood [but see Komatsu
(1996)]. This intracortical connectivity could also emerge without
inhibitory synaptic plasticity. In models in which only thalamo-
cortical synapses undergo correlation-based plasticity, the pres-
ence of a fixed inhibitory connection from one cortical cell to
another tends to cause the two to develop anticorrelated thalamo-
cortical RFs (Miller, 1994).

Troyer et al. « Model of Contrast-Invariant Orientation Tuning

>

Computational Model

60+ x LGN Tuning:  Contrast:
— — Narrow ¢ 50%
@l = — Broad %
s : 2 igj°
_?;‘;’40 3 K X 2.5%
~ ¥ .
£ 30 8 & 8 % g. y Bar: oo
o ~ . b3
=20} 8 8-
E g4
I 1o}

0 .
0 1 2 3 4

Inhibition Level

Conceptual Model

60|
3 50}
o
%40' —— 2.5% Narrow
e — — 2.5% Broad
%30 -
Zo0t \\wh°'&—5_8
© S
I 10} ~

0 ' .

0 1 2 3 4

Inhibition Level

Figure 5. Increasing inhibition leads to sharper tuning. Tuning half-
width at half-height (HWHH) versus level of inhibition for gratings of
2.5, 5, 10, 25, and 50% contrast. Thick solid (bottom) curve shows mean
tuning HWHH above 5% for RFs with large subfield aspect ratios and
narrow LGN tuning (matched to data from Jones and Palmer, 1987).
Thick dashed (top) curve shows mean tuning HWHH for RFs with small
subfield aspect ratios and broad LGN tuning (matched to data from
Ferster et al. 1996). Level of inhibition is normalized so that 1 is the level
that produces physiological half-widths for narrow LGN input (Fig. 4).
Overlapping symbols indicate contrast-invariance. Tuning gradually
sharpens with increased levels of inhibition. 4, Computational model.
B, Conceptual model. In conceptual model, tuning narrows slightly at 5%
contrast for large levels of inhibition. This is attributable to the fact that
spike threshold is optimized for default parameters, i.e., inhibition level of
1 (see Materials and Methods). Responses to 2.5% contrast gratings at
high inhibition levels for both narrow (solid) and broad (dashed) LGN
tuning are shown using thin lines. At very low contrast, conceptual model
predicts much narrower tuning.

The sufficiency of correlation-based inhibition for contrast-
invariant tuning is demonstrated in Fig. 4, which shows tuning
curves for both the computational and conceptual models, for
gratings of 2.5, 5, 10, 25, and 50% contrast. Both models display
contrast-invariant orientation tuning above 5% contrast. By
choosing the appropriate level of inhibition, both models were
able to match experimental estimates of mean orientation tuning
width for simple cells. For example, Heggelund and Albus (1978)
report that simple cells have a mean tuning width (HWHH) of
19.5°. Model tuning widths (HWHH) above 5% contrast were
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between 18.7 and 20.8° for both the computational and concep-
tual models.

The width of the tuning is largely determined by the strength of
the inhibition and the tuning of the LGN input. Fig. 5 shows
cortical tuning half-widths, using either narrowly or broadly tuned
LGN inputs, for various levels of inhibition. Tuning narrows with
stronger inhibition but remains contrast-invariant above 5% con-
trast. Tuning to a long moving bar (width 0.62°, velocity 3.75%/sec)
is slightly broader but shows identical sharpening with increasing
levels of inhibition: filled circles show bar tuning at 50% contrast
for the narrowly tuned LGN inputs.

For higher levels of inhibition and broadly tuned input, tuning
at 5% contrast narrows slightly in the conceptual model. This is
attributable to the fact that spike threshold was optimized for the
default level of inhibition (see Materials and Methods) and could
be corrected if spike thresholds were separately optimized for
each set of parameters. At 2.5% contrast and high levels of
inhibition (Fig. 5B, thin lines), the conceptual model predicts
much narrower tuning, for reasons that are more general (see
below).

The conceptual and computational models yield qualitatively
similar results. Simple additions to the conceptual model led to
progressively closer quantitative matches to computational model
behavior. A significantly improved match was obtained by adding
inhibitory thresholds and using correlation-based inhibitory con-
nectivity from cells with a range of RF properties (rather than
from only the single cell with precisely opposite spatial phase).
Using simulated synaptic noise (and hence changing the thresh-
old linear function to a smoother function near spike threshold)
led to an even closer match between the models and nearly
eliminated the difference in responses to 2.5% contrast gratings
(see below). However, incorporation of these features required
additional unconstrained parameters, and we began to lose the
simplicity that was the strength of the conceptual model. There-
fore, the results of these investigations are not further reported.

The behavior of our correlation-based model is presented
below, in three steps. First, we analyze the reasons why antiphase
inhibition achieves contrast-invariant tuning, using the simple

LGN Excitatory Synapses
Intracortical Excitatory Synapses
Inhibitory Synapses
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Figure 6. Behavior of model using
correlation-based connectivity. Sche-
matic representing behavior of the
model in response to preferred (A4) and
null (B) stimuli. The excitatory cell de-
scribed in Results is in the fop left; its
inhibitory antiphase partner is in the
bottom right. E, Excitatory cells; I, in-
hibitory cells. Solid lines represent exci-
tation and depolarization; open lines
represent inhibition and hyperpolariza-
tion. Line thickness and size of RF icon
represent magnitude of activity. Dashed
lines represent correlation-based excita-
tion, which is included in the complete
computational model only (see Figs.
8-11). Some simulations were per-
formed without cortical excitatory pro-
jections onto inhibitory neurons ( gray
dashed lines), but this did not substan-
tially affect network behavior (see Fig.
13B).

conceptual version of the model. Second, we incorporate
correlation-based intracortical excitation into the computational
model and present results from this completed model. Finally, we
explore the robustness of this computational model to variations
in the key parameters controlling model behavior. A schematic
representing the behavior of both models is shown in Fig. 6, and
will be referred to throughout the text.

Conceptual model: antiphase inhibition cancels the
untuned component of the input

Recall that the main obstacle to achieving contrast-invariant
tuning is the untuned component of the LGN input, which in-
creases with contrast as a result of the rectification of LGN
responses at higher contrasts. The ability of antiphase inhibition
to overcome this problem is most easily demonstrated in the
context of the two-cell conceptual model. Here we introduce the
term feedforward, by which we mean input from LGN to cortical
cells not mediated by cortical excitatory cells. Thus, the genicu-
locortical input represents feedforward excitation, whereas the
pathway from LGN to cortical inhibitory cell to cortical excitatory
cell represents feedforward inhibition.

Suppose an excitatory simple cell receives total input A° from
the LGN, and its inhibitory antiphase partner receives LGN input
A'. Assuming for simplicity that inhibitory cell response is linear,
the total feedforward input to the excitatory cell is A¢ — wA',
where w > 1 is the total strength of the inhibitory synaptic
connection multiplied by the gain of the inhibitory cells. During
the peak response to the preferred orientation, LGN excitation
A* is large, whereas the antiphase inhibition wA® is weak (Figs.
6A, 74, top). Thus, the cell gives a strong response. At the null
orientation, cells at all spatial phases are receiving an intermedi-
ate level of feedforward excitation 4¢ ~ A', and the inhibition
wA' > A¢ is sufficient to prevent excitatory cell spiking (Figs. 6B,
7A, bottom). Because A' and 4° both rise with contrast at the
same rate, the dominance of inhibition over excitation is main-
tained for null stimuli of all contrasts.

The ability of antiphase inhibition to achieve contrast-invariant
tuning for a wide variety of stimuli can be best understood by
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Figure 7. Inputs to a cortical cell given antiphase inhibition (inputs

shown relative to background). 4, Averaged computational model re-
sponses (40 presentations) to 50% contrast gratings. Excitatory LGN
input is marked Ex.; intracortical inhibitory input is marked Inh. To
compare excitatory and inhibitory inputs, synaptic conductances were
converted to currents obtained if the cell was voltage-clamped at thresh-
old. B, Peak synaptic current versus orientation for computational model.
Responses are to single presentations of 50, 10, and 5% contrast gratings
at 128°. Peak current is the first harmonic (F1) plus the mean (DC) of the
stimulus-induced current (including excitation and inhibition). Error bars
for 50% contrast are £1 SD. Dotted line shows approximate threshold
level that would lead to contrast-invariant tuning; actual threshold in
computational model is determined independently from in vitro data (see
Materials and Methods). C, Peak synaptic current versus orientation for
conceptual model. Because there is no noise, true peak current is shown.
Dotted line shows automatically selected threshold (see Materials and
Methods). For both models, mean input decreases and modulation in-
creases with contrast. Thresholds near the crossover point of net input
tuning curves result in sharp, contrast-invariant tuning.
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dividing the LGN input into two components: the phase-
nonspecific component 4, = (4° + A')/2—the average of the
input to the cell and to its antiphase partner—and the remaining
phase-specific component, A,.. = (4° — A4 /2. The total input to
the cell, 4° — wA", can then be rewritten (1 — w)A,,, + (1 +
W)Ape.- Thus, antiphase inhibition acts to eliminate the phase-
nonspecific component of the LGN input while it amplifies the
phase-specific component. For all of the commonly presented
oriented stimuli (moving or flashed bars, flashed or counter-
phased gratings), Hubel-Wiesel RFs yield a phase-specific com-
ponent tuned for orientation and a phase-nonspecific component
that is nearly or completely untuned. Thus, the effectiveness of
the antiphase model in achieving contrast-invariant tuning gen-
eralizes across stimuli.

This can be summarized by noting that the schematic circuit
(Fig. 6) acts as a “differential phase filter”: with inhibition suffi-
ciently large, any stimulus that gives similar excitation to each of
two opposite phases will cause more inhibition than excitation in
excitatory cells and hence will be “filtered out.” Only stimuli that
predominantly excite one phase and not its opposite can “pass”
through this “filter” and cause the excitatory cells to fire. The only
stimuli that can accomplish this are stimuli near the preferred
orientation; stimuli far from the preferred will give similar input
to both phases. This argument applies to any type of oriented
stimulus.

Conceptual model: dominant antiphase inhibition
provides a contrast-dependent effective threshold
Although the most important effect of antiphase inhibition is to
eliminate the phase-nonspecific component of the LGN input,
this is not sufficient to achieve contrast-invariant tuning. This can
be seen by setting w = 1, thereby causing (1 — w)A,,, = 0. In this
case, contrast invariance can be achieved only if spike threshold is
negligible, i.e., if any positive input leads to spiking. Otherwise,
orientations that at low contrast give positive but subthreshold
phase-specific input would yield spike responses at higher con-
trast, because A,.. grows with contrast; thus, orientation tuning
would broaden with contrast.

This problem is remedied by including relatively strong
inhibition, (w > 1). Then the phase-nonspecific component
(1 — w)A,, has a net inhibitory influence that increases with
contrast. Because the phase-nonspecific input is untuned for
orientation, it serves as a “plateau”—an input identical for stimuli
of all orientations—to which the orientation-tuned, phase-specific
component is added. The distance from this plateau to the cell’s
spike threshold can be thought of as a contrast-dependent effec-
tive threshold for the tuned input component (Bonds, 1989;
Ben-Yishai et al., 1995). With w > 1, this plateau is inhibitory and
moves farther from spike threshold with increasing contrast (Fig.
7B,C). By “pulling down” the tuned component, so that only a
portion of it is above the spike threshold, this inhibition serves to
sharpen the spiking orientation tuning relative to the tuning of
the phase-specific input. If spike threshold falls near the crossover
point of the net input tuning curves for varying contrasts (Fig.
7B,C, dotted lines), this inhibition sharpens the feedforward input
in a contrast-invariant manner.

In the conceptual model, spike threshold for excitatory cells
was automatically set at this crossover point in the input current
(see Materials and Methods). Somewhat surprisingly, we have
found that in the computational model, simply using a physiolog-
ically based spiking neuron model (Troyer and Miller, 1997a,b)
was adequate to robustly attain contrast-invariant tuning; no
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parameter adjustments were required. One possible explanation
is that synaptic noise “smears out” spike threshold, making it
relatively easy to match threshold with the crossover. Also, with
inhibition dominant, the orientation tuning curves cross one an-
other where input changes rapidly as a function of orientation, so
moderate changes in threshold should make little difference in
tuning. Simulations with the conceptual model show that moving
threshold by as much as 10% of the peak-to-peak variation in the
input driven by 5% gratings changes tuning by <1.5°.

At very low contrasts, the conceptual model predicts that ori-
entation tuning will narrow. Below ~5% contrast, LGN responses
do not rectify and therefore the plateau, (1 — w)A,.,, does not
change with contrast. Orientation tuning narrows with further
decreases in contrast (Fig. 5B), because the tuned input compo-
nent is reduced and the non-zero “effective threshold” is left
unchanged. It is unclear whether one could expect to see nar-
rower tuning in the experimental data. As mentioned above,
synaptic noise eliminates sharp thresholds, and the effect may be
lost in the noise. Computational model results bear this out:
tuning for 2.5% contrast has HWHH similar to that at higher
contrast (Fig. 5C). This conclusion is supported further by sim-
ulations in which synaptic noise was added to the conceptual
model. As mentioned above, in this case the conceptual model
behavior matched the broader tuning of the computational
model, even at 2.5% contrast (data not shown).

Computational model: adding

correlation-based excitation

Up to this point, we have not considered the effect of intracortical
excitation. We have seen that correlation-based inhibition is suf-
ficient to achieve sharp, contrast-invariant tuning. Here we show
that the addition of correlation-based excitation “amplifies” these
contrast-invariant responses, without altering their tuning. The
conceptual model, which contains only two cortical neurons, is
too simple to explore the effects of intracortical excitation in any
meaningful way. Hence, the remainder of this paper will present
results from the computational model only.

Intracortical excitation was incorporated using a correlation-
based rule analogous to that used for intracortical inhibition:
excitatory connections were determined probabilistically, such
that the strongest connections are found between cells whose RFs
are most strongly correlated, i.e., those with similar preferred
orientation and similar spatial phase. This is illustrated schemat-
ically by the dashed lines in Fig. 6. That intracortical excitation
comes primarily from cells of similar orientation preference and
similar spatial phase is supported by the fact that EPSPs are
evoked only by stimuli of appropriate position and phase, with
opposite phase to the stimuli that evoke IPSPs (Ferster, 1988;
Hirsch et al., 1995). More direct support is provided by Freeman
et al. (1997), who recorded from pairs of cat V1 simple cells
isolated on a single electrode. Cell pairs had similar preferred
orientations but randomly varying spatial phases. However, cross-
correlations indicative of a monosynaptic excitatory connection
were found only when the cells had similar absolute spatial phase
(G. Ghose, personal communication).

Because the dependence on correlation of intracortical inhibi-
tion and excitation differs only in sign, excitatory and inhibitory
connections in our model have precisely the same average distri-
bution in terms of orientation preference; they differ only in
spatial phase. An example is shown in Fig. 84, which illustrates
the experimental V1 orientation map used to assign preferred
orientations to cortical cells in the computational model. In this
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figure, white squares show the locations of cells making excitatory
connections to the excitatory cell at the X, whereas black squares
show the locations of cells making inhibitory connections. Exci-
tatory and inhibitory connections to this cell have similar distri-
butions as a function of orientation. Fig. 8 B shows the theoretical
average distribution of connections for retinotopically identical
RFs, as a function of orientation difference (top) and spatial
phase difference (bottom). The tightness of tuning as a function
of correlation is determined by the parameter n,,,, (see Materials
and Methods). Large values of n,,, lead to tighter connectivity as
a function of correlation, whereas smaller values of n,,,, lead to
broader connectivity. Increasing and decreasing n,.,, had only
minor effects on the behavior of the model.

For the full computational model, we reduced the synaptic
strengths of the LGN input by a factor of 2, relative to the
previous simulations without intracortical excitation. We thus
relied on the positive feedback from same-phase intracortical
excitation to amplify the response to suprathreshold stimuli. We
also increased the default level of inhibition (i — e conductances)
by a factor of 2, leaving the level of feedforward inhibition
(LGN — i — e) roughly constant. The reduction of LGN input
strength was important when comparing model behavior with
experimental estimates of stimulus-induced conductance changes
(discussed below). The intracortical excitation increased average
firing rates to a 50% contrast stimulus of the preferred orientation
by a factor of 2.1, relative to an identical circuit with intracortical
excitation removed.

Intracortical amplification of an effective stimulus by feedback
excitation has been used in many other models (Douglas et al.,
1989, 1995; Ben-Yishai et al., 1995; Somers et al., 1995; Suarez et
al., 1995). Our use of excitatory feedback differs in that our
“amplifier” is localized in spatial phase as well as in orientation.
It also differs from Ben-Yishai et al. (1995) and Somers et al.
(1995) in two important respects. First, our intracortical inhibi-
tory connections spread no farther than excitatory connections—
both are equally localized in orientation (Fig. 8B). Second, the
resulting amplified responses have F1 tuning identical to that of
the thalamocortical input alone, as observed by Ferster et al.
(1996) (Fig. 8E).

pow

Computational model: tuning

For the full circuit, typical currents and voltages from excitatory
cells at various orientations are shown in Fig. 9. The behavior of
a cell tuned to the stimulus is shown at the top left. At the
antipreferred temporal phase, large inhibitory currents hyperpo-
larize the cell to near the chloride reversal potential. As the
preferred phase is approached, the inhibitory currents drop and
the excitatory currents rise, depolarizing the membrane to spike
threshold. Spikes in turn evoke adaptation currents, which help to
shut off the cell’s response. Adaptation currents in other cells
across the network lead to a lowering of the intracortically evoked
excitatory current. For a cell tuned to stimuli perpendicular to
that presented (Fig. 9, top right), inhibition dominates at all phases
and the cell is prevented from firing.

The full model, including same-phase excitation, achieves con-
trast invariant tuning to sinusoidal gratings (Fig. 8C, colored
lines). Orientation tuning half-widths at half-height of the mean
firing rates of excitatory cells were between 19 and 21° for
contrasts ranging from 2.5 to 50%. The model was also well tuned
to a moving oriented bar; tuning width for the default parameters
was 27.5° slightly broader than for gratings.
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Figure 8. Behavior of the full computational model. 4, Orientation map used, and typical pattern of intracortical connections. There is one excitatory
cell in every location of the cortical map (40 X 40 lattice) and one inhibitory cell in every fourth location (20 X 20 lattice). Cells were assigned preferred
orientation according to illustrated 40 X 40 color map (red-green-blue-red representing 0—60-120-180°) (map is %3 X % mm from measurement in cat
V1, provided by Michael Crair and Michael Stryker); RF spatial phases were assigned randomly to each cell, whereas retinotopic centers progress
continuously across the map (described in Materials and Methods). Intracortical connections were assigned probabilistically according to RF correlations
(excitatory connections, yielding roughly same-phase excitation) or anticorrelations (inhibitory connections, yielding roughly antiphase inhibition). A
typical connectivity pattern is shown by the black and white squares, which illustrate locations of cells making inhibitory or excitatory intracortical synaptic
connections, respectively, to the excitatory cell at the red X. Area of squares is proportional to connection strength. The distributions of excitatory and
inhibitory connections across orientations are similar; on average, these distributions are identical. B, Theoretical distribution of connectivity as a
function of the difference in preferred orientation (fop) and the difference in spatial phase (bottom) between two cortical neurons with overlapping RF
centers. Probability of excitatory connections is shown in red; inhibitory probabilities are shown inverted and in blue. All values are shown as percentage
of maximal connection probability. The parameter 7, controls the width of tuning as a function of correlation (see Materials and Methods); 71,6, =
6 (solid line) is the default value. Excitation and inhibition have identical spreads as a function of orientation difference but have opposite preferences
for spatial phase. Distribution versus preferred orientation is averaged over cells of all spatial phases; distribution versus spatial phase averaged over cells
of all preferred orientations, with spatial phase measured with respect to the center of the RF for all orientations. C-E, All responses are to 3 Hz, 0.8
cycle/degree sinusoidal grating. C, D, Firing rates of excitatory and inhibitory cells, versus orientation, as function of contrast (indicated by key in C).
Error bars for the 50% contrast and 2.5% contrast responses are =1 SD. E, Amplitude (F1) of excitatory cell voltage modulation, with and without the
intracortical circuitry, versus difference of stimulus orientation from preferred. Dots, F1 for all 1600 excitatory cells; traces, means in 10° orientation bins,
as in C, D. Blue, F1 for thalamocortical inputs alone; green, F1 with the full cortical circuit. Red trace is the thalamocortical response scaled to the peak
response of the full cortical circuit. Note that thalamocortical and full circuit have same tuning, as in Ferster et al. (1996).
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stimulus orientation relative to preferred (vertical ). Top row shows orientation differences spaced at 30° intervals; bottom row shows model behavior at
orientations between 0 and 30°. Excitation and inhibition arrive out of phase and have similar orientation tuning. Inhibition dominates at the null.

Our model also achieves nearly identical orientation tuning of
the excitation and inhibition received by a simple cell, as observed
in Ferster (1986). Figure 10 demonstrates that the F1 tuning
curves of excitatory and inhibitory conductances onto cortical
cells have nearly identical shapes. However, the spiking responses
of excitatory and inhibitory cells differ. Like excitatory cells,
inhibitory interneurons have a tuned peak in their firing rates
near the preferred orientation; however, unlike the excitatory
cells, at the null orientation their firing rates rise above back-
ground with increasing contrast (Fig. 8 D). This untuned compo-
nent of the inhibitory response counters the untuned component
of the LGN input and is necessary to prevent excitatory spiking
for null-oriented stimuli. Because the untuned response compo-
nent increases with increasing contrast, inhibitory cell tuning
measured as HWHH (with background subtracted) broadens
with contrast from 32.3° at 5% contrast to 41.6° at 50% contrast.
If, however, one measures the width of tuning after subtracting
the response to null stimuli, inhibitory cells have HWHH across
contrasts of 18.6-20.7°, similar to excitatory cell tuning.

Orientation tuning is driven by LGN input

The tuning in our model is driven by the LGN inputs, despite the
strong role of intracortical inhibition. In agreement with the
cortical cooling experiments of Ferster et al. (1996), the tuning of
the first harmonic (F1) of the membrane potential response to
moving gratings was identical for the full circuit and when all
intracortical synapses were set to zero strength (Fig. 8E). For our
default parameters, we find that the cortical circuitry amplifies the
purely thalamocortical F1 by a factor of 3.4, slightly higher than
the estimate (2.7) reported by Ferster et al. (1996).

A more rigorous test of the hypothesis that cortical tuning is
driven by the LGN can be obtained by systematically varying the
tuning of the LGN input. This can be accomplished by varying
the spatial frequency of a sinusoidal grating (Fig. 11). As spatial
frequency is increased, the orientation tuning of the F1 of the
LGN inputs becomes narrower (Fig. 114, middle). The F1 of the
full circuit closely follows the LGN F1 across spatial frequencies
(Fig. 114, top), yielding a narrowing of orientation tuning of the
spiking response with increasing spatial frequency (Fig. 11B).
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Figure 10. Orientation tuning of peak excitatory current (dot-dashed
line) and inhibitory current (solid line) at 50% contrast (peak current
equals DC+F1I; see Fig. 7B). Dotted line shows excitatory current scaled
and translated to match maxima and minima of inhibitory currents. Peak
inhibition is larger than excitation at all orientations, but the tuned
components of excitation and inhibition have nearly identical shape.

Note that there is an optimal spatial frequency, at which spike
response to stimuli of the preferred orientation is maximal (Fig.
11B, inset); thus, as spatial frequency increases, the orientation
tuning width monotonically narrows, while spike response to the
preferred orientation rises to a maximum and falls again. This is
precisely the behavior observed in cat cortical cells (Vidyasagar
and Siglienza, 1985; Webster and De Valois, 1985; Jones et al.,
1987; Hammond and Pomfrett, 1990) and is the behavior ex-
pected for a cell receiving inputs from a linear Gabor function
RF. Similar behavior should occur for other stimulus manipula-
tions that would vary the tuning of the LGN F1 but that have not
yet been reported experimentally, such as the use of moving or
flashed ellipses of various eccentricities; the key point is that the
full circuit F1 and the spiking tuning closely covary with the LGN
tuning.

Inhibitory sharpening of orientation tuning is attributable ex-
clusively to disynaptic inhibition driven by the LGN input, i.e.,
sharpening depends on feedforward inhibition. Feedback inhibi-
tion [resulting from cortical cell excitation of inhibitory cells (Fig.
6, gray dashed lines)] has little effect on model behavior. In
simulations run after setting these connections to zero, tuning
curve half-widths at the default parameters remain unchanged to
within 1° for 10% contrast and above (4° change at 5% contrast),
and peak spiking responses increased by <6.4% (see Fig. 13B).
These small changes in output occur even though the mean
inhibitory conductance in response to a 50% contrast grating at
the preferred orientation is reduced by 38%.

This result can be understood by examining Figure 6. With
same-phase excitation and antiphase inhibition, firing of excita-
tory cells of one phase increases the inhibition onto excitatory
cells of the opposite phase, but excitatory cells with RFs of
opposite spatial phase spike during opposite temporal phase of the
stimulus. Therefore, feedback inhibition is directed onto cells
that are already not spiking and has little effect on model
behavior.

Inhibitory dominance and inhibitory blockade

The model operates in an inhibition-dominated regime, as re-
vealed by various measures. For the default parameter settings
used to measure tuning (Fig. 8), the total synaptic strength re-
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of a sinusoidal grating (3 Hz). A, Tuning of the F1 voltage modulation for
the full circuit (fop) and with LGN excitation only (middle). Tuning
curves, from widest to narrowest, represent response to spatial frequen-
cies 0.4 (dot-dashed), 0.56 (thin), 0.8 (thick), and 1.13 (dashed) cycles/
degree, respectively; each curve is normalized to its peak response.
Thicker line is the spatial frequency used for simulations in other figures.
The bottom shows the difference between the normalized tuning curves:
LGN input F1 and full circuit F1 closely match. B, Half-width at half
height versus spatial frequency for 5, 10, 25, and 50% contrast gratings.
Orientation tuning remains contrast invariant over a broad range of
spatial frequencies. Inset, Spatial frequency tuning curve at the preferred
orientation and 50% contrast.
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Figure 12.  Orientation tuning after blocking inhibition in a single cell [as
in Nelson et al. (1994)]. Tuning curves derived when inhibitory and
adaptation currents are blocked within a single cell (see Materials and
Methods). Dotted line shows tuning with inhibitory blockade only; solid
line shows the tuning when negative current equal to the mean inhibitory
synaptic current at background is injected into the cell. Dashed line shows
tuning without blockade for comparison. Inhibitory blockade with current
injection has little effect on tuning. Notice, however, a slight (1.9 Hz) rise
in the response to null stimuli. Contrast equals 50%.

ceived by a cell (see Materials and Methods for definition) were
5, 4.25, and 7.5 nA msec for the LGN inputs, cortical excitation,
and cortical inhibition, respectively. A null-oriented stimulus in-
duces an inhibitory current that is ~3.9 times as large as the
excitatory current for a cell clamped at threshold voltage, corre-
sponding to an inhibitory conductance change that is 11.7 times
greater than the change in excitatory conductance. Strong inhibi-
tion is consistent with the experimental result that nonspecific
stimulation of LGN afferents (or cortical white matter) yields a
short EPSP followed by a large IPSP (Ferster and Jagadeesh,
1992). However, quantitative measurements of the balance of
excitation and inhibition under physiological conditions have not
been reported, and estimates based on indirect evidence are
imprecise (Shadlen and Newsome, 1994).

Our model agrees with the experiments of Nelson et al. (1994),
which demonstrated that intracellular blockade of inhibition in a
single neuron, with DC current injection sufficient to suppress
excess background firing, did not disrupt cortical orientation
tuning. Figure 12 shows extracellular tuning curves for cells under
inhibitory blockade with (solid line) and without (dot-dashed
line) compensating DC current injection. Tuning curves without
blockade are shown for comparison (dashed line). [Note that
Nelson et al. (1994) used moving bar stimuli, whereas we use
drifting gratings.] We find a small amount (1.9 Hz) of elevated
spiking at the null, consistent with the observation that some cells
did show spiking at the null under inhibitory blockade (S. B.
Nelson, personal communication). This reflects the untuned
mean DC component of the LGN input.

The effects of global blockade of inhibition are discussed below
(Fig. 134).

Robustness of model results

The effect of parameter variations on computational model be-
havior is shown in Figure 13. Each of the subplots represents the
effect of varying the strength of two variables out of the following
four: the three types of synaptic connections in the model
[thalamocortical excitation (LGN), intracortical excitation (e —
{e, i}), and inhibition (i — e)] and spike-rate adaptation in
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excitatory cells. Magnitudes of a given type of connection or
conductance were varied by multiplying all of the corresponding
unitary conductances by a constant factor. In Figure 13B,D, the
intracortical excitation of inhibitory cells was removed (e —1i = 0).

Simulations were run at four contrasts (5, 10, 25, and 50%) for
each point in the 5 X 5 parameter grid. We monitored contrast-
invariance of orientation tuning, average tuning width (HWHH),
and firing rates at the preferred orientation and 50% contrast.
Contrast-invariance is represented by color within the ovals;
darker ovals represent loss of contrast invariance. Spike tuning
HWHH is denoted by oval width, relative to oval height, which
represents 30°. The light gray shaded regions indicate HWHH
tuning of <22°. Spike rate to a 50% contrast preferred stimulus is
printed inside each oval. The lines show the relation of model
behavior to various experimental estimates and are discussed
below.

The model robustly achieves sharp, contrast-invariant tuning.
Thin white ovals within the gray shaded regions indicate that in
the large regions of parameter space in which tuning is sharp, it
also remains contrast invariant. Increasing inhibition leads to
sharper tuning (narrower ovals) and has only moderate effects on
spike rate, except with very strong levels of intracortical excitation.

This qualitative behavior is quite robust to changes in other
model parameters. Increasing and decreasing the tightness of the
correlation-based connectivity by changing the parameter 7,
(Fig. 8B) by a factor of 2 had only moderate effects on model
behavior. When the more broadly tuned geniculocortical connec-
tivity matched to the data of Ferster et al. (1996) was used, tuning
widened substantially. However, large levels of inhibition still
produced sharp tuning (Fig. 5), and the level of intracortical
excitation that led to feedback instability remained relatively
unchanged.

The roles of feedforward and feedback inhibition

High levels of intracortical excitation (Fig. 134,B,D, top portions)
lead to unstable feedback excitation, indicated by sharply in-
creased spike rates, broadening of orientation tuning, and a loss
of contrast invariance. Strong excitation is difficult to control,
even for high levels of inhibition, because the model lacks the
center-surround (“Mexican hat”) intracortical connectivity com-
monly used to stabilize feedback excitation (Ben-Yishai et al.,
1995; Somers et al., 1995). A set of activated excitatory cells will
excite cells of nearby orientation and similar spatial phase and
will drive feedback inhibition (e — i — e) onto cells of nearby
orientation but nearly opposite spatial phase. Excitation can thus
spread in orientation along a series of cells linked by similar
spatial phase, unchecked by feedback inhibition.

The most important parameter determining the presence of
runaway excitation is the strength of intracortical e — e connec-
tions. However, feedforward inhibition from the LGN (LGN —
i — e) also plays a role. As discussed earlier, the phase-
nonspecific component of feedforward input is inhibitory and acts
like a contrast-dependent effective threshold, increasing the de-
polarizing current necessary to reach threshold with increasing
contrast (Fig. 7); intracortical excitation must overcome this in-
hibition in order to spread. At low contrast, the effective threshold
is small and presents a weak barrier to the spread of excitation.
Consequently, whenever feedback excitation resulted in a loss of
contrast invariance (darker ovals), this loss was attributable to a
widening of tuning at lower contrasts. That is, feedback instability
poses the greatest problem at lower contrasts, even though peak
firing rates are lowest at these contrasts.
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Figure 13. Robustness of model behavior to changes in various model
parameters. Each subplot represents the effect of varying the strength of
two variables out of the following four: the three types of synaptic
connections (LGN input, intracortical excitation, and inhibition) and
spike-rate adaptation in excitatory cells. Mean spike tuning half-width at
half-height (HWHH) for 5, 10, 25, and 50% contrast gratings is repre-
sented by oval width. Oval height represents 30°. Mean spike rates (Hz)
for preferred stimuli at 50% contrast are printed inside each oval. Darker
ovals indicate a loss of contrast invariance, monitored as SD divided by
the mean of the HWHH over the four contrasts sampled. Points with
extremely broad tuning are contrast-invariant only because all contrasts
give maximal HWHH. Lines show experimentally reported values for
mean spike rate (bold line equals 20 Hz) (Albrecht, 1995), maximal
conductance change from background for a high contrast, null stimulus
(dashed line equals 20%) (Douglas et al., 1988), and ratio of voltage F1
with and without input from cortical circuitry [Amplification: white line =
3 (Ferster et al., 1996)]. Light gray area indicates areas of sharp tuning
(HWHH <22°). Dark gray area in C and D indicates regions with HWHH
<22°, amplification <3, spike rate >15 Hz, and conductance change
<40% (C) or <22% (D). Arrows in A and C indicate default network
parameters used in Figs. 8—12. Note that (1) parameter values that lead to
sharp tuning also yield contrast invariance; (2) higher levels of inhibition
sharpen tuning; (3) high levels of excitation lead to instability—runaway
feedback excitation—indicated by high spike rates, broad tuning, and loss
of contrast invariance; and (4) removing e — i connections causes little
change in stable region except that amplification is reduced (also true for
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Removing feedback inhibition by removing intracortical exci-
tatory input onto inhibitory cells has little effect on the model
behavior. This is demonstrated in Fig. 13B, which shows the
results of using parameters identical to those of Fig. 134, except
that e — i connections are set to zero strength. Even though mean
inhibitory conductance is substantially reduced (by 38% at the
preferred orientation, for 50% contrast and default parameters),
model behavior is virtually unchanged.

In agreement with experiments using large amounts of
GABA-A antagonists (Sillito, 1975; Tsumoto et al., 1979), strong
reduction of inhibition leads to a loss of orientation tuning (a
single run with zero inhibition is shown at left of parameter grid
in Fig. 134). This loss of tuning is attributable primarily to the
fact that at very low inhibition levels the untuned phase-
nonspecific component of the LGN input remains uncancelled by
feedforward inhibition (although unchecked feedback excitation
also contributes). Under less severe blockade, our model predicts
that, much as in intracellular GABAergeic blockade (Fig. 12,
Block Only condition), excitatory cell tuning should resemble that
of inhibitory cells: a well tuned peak on an untuned platform
whose height increases with contrast (see left portion of Fig. 5:
orientation tuning gradually widens before being lost as inhibition
decreases). Such an untuned platform at a single stimulus contrast
has been observed after inhibitory blockade in cat simple cells
(Sillito, 1975; Tsumoto et al., 1979); similar results can be seen in
monkey visual cortex (Sato et al., 1996).

Comparisons with experimental estimates

In addition to the width and invariance of orientation tuning, we
monitored the conductance change to a null stimulus, the mag-
nitude of the full circuit voltage F1, and the mean spike rate for
a 50% contrast preferred stimulus. The lines in Figure 13 show
the contours through parameter space corresponding to experi-
mental estimates of these variables. First, some results (Douglas
et al., 1988, 1991; Koch et al., 1990) suggest that conductance
change at the null is small, although there is a great deal of
uncertainty about this issue (see Discussion). The dashed lines
represent conductance changes that are 20% of background.
Smaller changes were achieved only for sufficiently small levels of
excitation and inhibition (regions to left of dashed lines). Strong
levels of inhibition can sharpen tuning, but at the expense of
larger conductance change at the null. Second, Ferster et al.
(1996) very roughly estimated a ratio of 2.7 for the magnitude of
the voltage F1 with versus without input from cortical circuitry
(we refer to this ratio as the level of “cortical amplification”). A
cortical amplification level of 3 is represented by the white lines.
Amplifications of this size or smaller are obtained for cortical
synaptic strengths that are sufficiently small compared with tha-
lamic input (Fig. 134,B, bottom left corner; C, top portion).
Third, Albrecht (1995) reported that the F1 of the spike rate of
simple cells to preferred stimuli at 50% contrast is ~38 Hz.
Assuming a ratio of F1 to DC of 1.57 (Skottun et al., 1991), this
results in a mean spike rate of ~20 Hz (bold line). For default

<«

varying adaptation as in D; data not shown). Within light gray areas, null
conductance changes are as follows: (A4) 20-44%; (B) 21-42%; (C)
4-60%; (D) 21-23%; amplification ranges (A4) 2.7-3.8; (B) 2.7-3.5; (C)
2.4-3.9; (D) 2.2-3.2; CV of contrast invariance ranges (A4) 0.02-0.06; (B)
0.03-0.11; (C) 0.01-0.15; (D) 0.01-0.06. Gray area and line interpolations
obtained with MATLAB “contour” command. See Results for detailed
discussion.
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levels of LGN input (Fig. 134, B), spike rates for parameters that
achieve contrast-invariant tuning were relatively low.

Simply by varying synaptic strengths, we were not able to
quantitatively match all three of these estimates simultaneously.
The reason is as follows. Low conductance change at the null
means that feedforward conductances must be small relative to
the cell’s background conductance. Given the responsiveness of
our model neurons to these weak inputs, we find that this implies
that firing rates will be small unless there is large cortical ampli-
fication of the feedforward input. However, such large cortical
amplification both disagrees with the estimates of Ferster et al.
(1996) (also see Chung and Ferster, 1997) and, in our model,
leads to instability and loss of tuning. By increasing thalamocor-
tical conductances, we can achieve sharp, contrast-invariant tun-
ing with realistic firing rates and amplification levels, but conduc-
tance changes to a null stimulus become larger. This is shown by
the dark gray region in Fig. 13C, which shows points with spike
rate >15 Hz, tuning HWHH <22°, amplification ratio <3, and
conductance change <40%.

Varying neuronal gain

One obvious way out of this dilemma is that cortical cells may
respond more strongly to weak thalamocortical input and mod-
erate amplification than do our model neurons. We used ex-
tremely simple model neurons, including a simple, voltage-
independent mechanism for spike rate adaptation. These were
matched to experimental data on firing rate versus constant
somatic current level in vitro (McCormick et al., 1985; Troyer and
Miller, 1997a,b) (see Materials and Methods). Our model may not
accurately model responses to synaptic currents in vivo, where
cells are subject to various neuromodulators, slow currents, and
active conductances, receive fluctuating synaptic input over a
spatially extended dendritic tree, and may show weaker spike rate
adaptation. All of these may affect the “neuronal gain,” i.e., the
magnitude of a neuron’s response to a given level of synaptic
input (Fox et al., 1990; Storm, 1990; Mel, 1993; Nowak et al., 1997;
Tang et al., 1997). A simple argument shows that neuronal gain
and synaptic strength can trade off against one another: suppose
a neuron’s gain could be doubled, so that it fires at twice its
previous rate in response to any stimulus pattern. If the strength
of its synaptic conductances onto other cells were simultaneously
cut in half, then each cell in the network would receive the same
total input as before the change. By making these changes for all
excitatory cells in the network, spike rates could be doubled
without altering network behavior, including orientation tuning
widths.

To investigate the changes in model behavior induced by in-
creasing neuronal gain, we studied the effects of lowering spike-
rate adaptation in model excitatory neurons (Fig. 13D). We also
removed e — i conductances as in Figure 13B; this reduces
cortical amplification without altering network behavior (Fig. 13,
compare A,B). Spike rates are increased while tuning remains
sharp and contrast-invariant (Fig. 13D). Conductance changes at
the null are relatively unaffected by the change in neuronal gain
(conductance changes range from 20.6 to 22.5%, excluding the
unstable point at top left). Reducing the spike-triggered adapta-
tion current in our model by ~75% leads to a substantial region
of parameter space satisfying all experimental estimates: the dark
gray region shows points for which spike rates are >15 Hz,
amplification ratios <3, and tuning HWHH <22°; in this region,
null conductance changes are <22%.
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DISCUSSION

Principal findings and predictions

We have constructed a simple model that accounts for contrast-
invariant orientation tuning in layer 4 of cat visual cortex. First,
we analyzed the LGN input to simple cells in response to drifting
sinusoidal gratings. This input has two components: a temporally
modulated, phase-specific component that is tuned for orienta-
tion, and an unmodulated, phase-nonspecific component that,
assuming LGN cells are not orientation-tuned, must be com-
pletely untuned. Because of LGN rectification, this untuned input
increases significantly with increasing contrast, implying that no
simple threshold mechanism could correct for it across contrasts.
This problem is general: the phase-nonspecific LGN input com-
ponent for any stimulus is poorly tuned and increases with con-
trast. To counteract this increase in untuned feedforward excita-
tion, stimulation of an excitatory cell at its null orientation must
evoke increasing intracortical inhibition and/or increasing with-
drawal of intracortical excitation with increasing contrast. Thus,
the central questions for understanding contrast-invariant orien-
tation tuning in cat layer 4 are how the level of this contrast-
dependent “pull” is computed and which cells are its source.
Second, we have demonstrated that cortical circuitry relying on
correlation-based connectivity is sufficient to robustly yield
contrast-invariant orientation tuning. In our model, the contrast-
dependent inhibition to layer 4 simple cells comes from inhibitory
cells with similar orientation tuning and roughly opposite spatial
phase (Fig. 8B). The tuned input component is amplified by
excitatory connections between cells with similar orientation tun-
ing and similar spatial phase. Although some details might vary,
our key predictions are that the layer 4 circuitry is strongly
phase-specific, inhibition-dominated, and localized in orientation,
and has orientation tuning that depends on the LGN input tuning.
Beyond the circuit itself, our most striking prediction is the
existence of inhibitory simple cells that are tuned for orientation
but have a contrast-dependent response to null-oriented stimuli.
We also predict that (1) the DC LGN input should increase with
increasing contrast at all orientations, whereas (2) the dominance
of inhibition should cause the net DC feedforward input (LGN
plus feedforward inhibition) to decrease with increasing contrast
at all orientations. These predictions are most easily tested with
null-oriented stimuli, for which feedback excitation should be
negligible. Prediction (1) could be tested by blocking inhibition
intracellularly in a single layer 4 cell. Note that for (2) the
predicted decrease is in net current at threshold voltage; this need
not imply voltage decrease from rest, because of differences
between excitatory and inhibitory reversal potentials. In addition,
we predict that intracellular, or sufficiently weak extracellular,
GABAergic blockade in layer 4 should reveal a tuned response
component sitting on an untuned plateau response (Fig. 12).

Possible sources of contrast-dependent inhibition
Besides antiphase inhibition, what are other possible sources of
the contrast-dependent pull required to achieve contrast-
invariant tuning? Because the LGN input is exclusively excitatory
(Ferster and Lindstrom, 1983), inhibition must come from other
cortical cells. One obvious possibility is inhibitory cells that prefer
stimuli of the orthogonal (null) orientation. A major contribution
from such cells seems to be ruled out in cat layer 4 by the similar
orientation tuning of excitation and inhibition (Ferster, 1986) and
by the phase-specificity and spatial opponency of EPSPs and
IPSPs (Ferster, 1988; Hirsch et al., 1995).

Another source of pull could be withdrawal of excitation from
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other cortical cells. Because layer 4 simple cells have very low
spontaneous rates, significant withdrawal would most likely come
from complex cells, which do show contrast-dependent inhibition
to a null stimulus (Sclar and Freeman, 1982). This explanation
would simply move the problem of the origin of the required
inhibition onto complex cells.

One study has suggested that inhibition onto layer 4 simple
cells with multiple ON/OFF subregions may come primarily from
layer 4 simple cells with single-subregion RFs (Toyama et al.,
1981), whereas multi-subregion inhibitory cells in layer 4 may act
primarily on layer 3 complex cells. Thus, the population showing
an untuned plateau response might be restricted to the single-
subregion inhibitory cells; inhibition from these cells might block
responses at the null orientation in both inhibitory and excitatory
multi-subregion cells.

Carandini and Ferster (1997) have shown that a tonic hyper-
polarization underlies contrast adaptation in cat simple cells.
This contrast-dependent pull may make an important contribu-
tion toward contrast-invariant orientation tuning for steady-state
stimuli. However, this mechanism would not play a role for
transient stimuli such as moving or flashed bars. Although
contrast-invariance for these stimuli has not been explored in
detail, our analysis shows that tight orientation tuning to high-
contrast bars combined with robust responses to low-contrast bars
would require contrast-dependent cancellation of the phase-
nonspecific component of the LGN input. Furthermore, contrast-
dependent pull is required at all orientations, whereas contrast
adaptation appears to not be induced by null-oriented stimuli
(Allison and Martin, 1997).

Our analysis shows that the untuned component of the LGN
input will cause simple cells to spike in response to a high-
contrast, null-oriented stimulus, unless they are inhibited. Our
model relies on the simplest explanation for the source of this
contrast-dependent inhibition: inhibitory neurons (or a subset of
them) are not strongly inhibited and do spike, providing the
inhibition necessary to prevent responses in the remaining layer 4
neurons.

Experimental results related to inhibitory cell tuning
Several studies have reported that cat layer 4 inhibitory interneu-
rons have simple cell RF structure much like that of excitatory
neurons and are orientation-tuned (Gilbert and Wiesel, 1979;
Toyama et al., 1981; Martin, 1988) (J. Hirsch, unpublished obser-
vations). However, only Azouz et al. (1997) reported details of
orientation tuning in V1 inhibitory neurons. Consistent with our
predictions (Krukowski et al., 1996), they found that five of eight
inhibitory cells identified in intracellular recording showed sig-
nificant spiking response at the null; the strongest null response
was found in the only layer 4 interneuron studied. However, they
did not study contrast dependence of responses and also reported
that in their hands 70% of extracellularly recorded cells showed
spiking at the null.

Our prediction for inhibitory cell tuning is also consistent with
observations in other systems. In rabbit visual cortex, putative
inhibitory neurons respond to all orientations, whereas other
neurons respond only to a limited range of orientations (Swadlow,
1988); orientation tuning of these cells was not otherwise re-
ported. More generally, putative inhibitory neurons are more
broadly tuned than other cells across various cortical systems
(Simons and Carvell, 1989; Swadlow, 1989, 1990, 1991, 1994;
Brumberg et al., 1996).
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Input-driven tuning
Orientation tuning in our model is driven by the LGN inputs. The
model yields voltage responses that have identical F1 tuning with
and without intracortical synaptic input (Figs. 8, 10) (Ferster et
al., 1996). In addition, orientation tuning sharpens with increasing
spatial frequency of a sinusoidal grating, as is also observed in cat
visual cortex (Vidyasagar and Sigiienza, 1985; Webster and De
Valois, 1985; Jones et al., 1987; Hammond and Pomfrett, 1990).
Nonetheless, cortical circuitry plays a key role in our model.
Inhibitory cells have an untuned component to their response that
eliminates the untuned component of the LGN input and sharp-
ens spike tuning. Studies in the rat whisker barrel system also
indicate that the layer 4 computation is local, input-driven, and
dependent on broad inhibitory tuning (Brumberg et al., 1996,
1997; Pinto et al., 1996; Simons and Carvell, 1989), suggesting
that these may be general properties of layer 4 cortical circuitry.
Other models (Ben-Yishai et al., 1995; Somers et al., 1995;
Adorjan et al., 1997) predict that orientation tuning is determined
by cortical circuitry, independent of input tuning, and thus should
not change with stimulus spatial frequency. Such models do not
allow simultaneous representation of multiple orientations at a
single retinotopic position (Carandini and Ringach, 1997), which
may play an important role in visual processing, including figure/
ground separation and object recognition (Zucker, 1986).

Model robustness and experimental constraints

Our model uses correlation-based inhibition to robustly achieve
sharp, contrast-invariant, input-driven orientation tuning over a
wide parameter range. The ability of a simple, two-cell concep-
tual model to capture the essential behavior of the more realistic
computational model argues strongly for the robustness of the
underlying mechanisms.

We examined the conditions under which this tuning could be
achieved while satisfying several other constraints suggested by
various experiments: (1) small (<20%) conductance changes to a
null stimulus; (2) high (~20 Hz) steady-state firing rates to a
high-contrast preferred stimulus; and (3) only moderate (~2.7
times) cortical amplification of the LGN input. We have found
that these conditions can be satisfied simultaneously if the neu-
ronal gain of our model excitatory neurons is increased, for exam-
ple by reducing the magnitude of the spike-trigged adaptation
(AHP) current. Alternately, by increasing feedforward synaptic
strengths, all but the conductance condition can be robustly met.

The experimental support for these constraints in layer 4 is not
entirely clear. With the exception of the amplification level, our
numerical targets are based on average values across cortical
simple cells from all layers, but properties of layer 4 cells may
differ [Tolhurst and Thompson (1981) suggest that orientation
tuning is broadest in layer 4]. Indeed, if the layer 4 circuitry solves
the problem of contrast-invariant tuning, it may be relatively easy
for cells in other layers to display sharp tuning with high rates and
small conductance changes. In addition, quantitative estimates of
conductance change remain controversial. Different labs and
techniques are producing widely varying measurements [Douglas
et al., 1988, 1991; Hirsch et al., 1995 (and unpublished observa-
tions); Carandini and Ferster, 1997; Monier et al., 1997]. Further-
more, the relationship between net synaptic input and conduc-
tance changes measured at the soma is complicated by factors
such as voltage-dependent dendritic conductances (Yuste and
Tank, 1996) and large synaptic background conductances (Ber-
nander et al., 1991), which were not considered in previous
theoretical studies (Koch et al., 1990).
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Withdrawal of tonic input could also have an important effect on
stimulus-induced conductance changes. Withdrawal of excitation
from complex cells, discussed above, would contribute to low
conductance change in response to a null stimulus. Withdrawal of
tonic antiphase inhibition might allow a large spike response to a
preferred stimulus without a large change in conductance. There
are some indications from experiments that this change may be
small during spike responses (Carandini and Ferster, 1997; Monier
et al.,, 1997). Our model shows a large conductance change at the
preferred orientation (mean increase 72%; peak 148%). With-
drawal of tonic inhibition would be enhanced in our model by
raising the tonic background spike rate of our model inhibitory
cells [currently ~12 Hz (see Materials and Methods)] to match
values typically found experimentally (~20 Hz) (Simons and
Carvell, 1989; Swadlow, 1989, 1990, 1991, 1994; Brumberg et al.,
1996). Antiphase i — i connections, which have been observed in
inhibitory simple cells in layer 4 (J. Hirsch, unpublished observa-
tions), could also contribute to withdrawal of inhibition at the
preferred orientation (inhibitory gain and/or i — e connection
strengths would have to be increased to maintain adequate inhibi-
tion at the null).

Many factors not studied here might increase the stability of
feedback excitation, enabling high firing rates with small increases
in null conductance (at the cost of large amplification). These
factors include frequency-dependent short-term synaptic depres-
sion (Thomson and Deuchars, 1994; Abbott et al., 1997; Priebe et
al., 1997; Tsodyks and Markram, 1997) and slow GABA-B medi-
ated inhibition (Allison et al., 1996; Bush and Priebe, 1998). In
addition, weaker components of inhibitory connectivity that are
phase-nonspecific or broadly tuned relative to excitation (Wor-
gotter and Koch, 1991) could help to stabilize the amplifier
without dominating orientation tuning.

Nonlinear response properties with local circuitry

Many groups have suggested that (1) important features of simple
cell responses can be approximated using a linear function of
stimulus contrast (Movshon et al., 1978; Glezer et al., 1982;
Tolhurst and Dean, 1990; Albrecht and Geisler, 1991; Heeger,
1992; Carandini and Heeger, 1994; Carandini et al., 1997, 1998)
and that (2) such linear responses might be achieved by a circuit
involving opponent or push—pull inhibition, in which inhibition
balances excitation (Glezer et al., 1982; Tolhurst and Dean, 1990;
Carandini and Heeger, 1994; Carandini et al., 1997, 1998). Sev-
eral groups further proposed that various nonlinear contrast
effects could be explained through addition to the linear model of
a global, divisive normalization of activity levels (Albrecht and
Geisler, 1991; Heeger, 1992; Carandini and Heeger, 1994; Car-
andini et al., 1997, 1998). Carandini and colleagues proposed that
this normalization could arise through global, orientation-
nonspecific inhibitory connectivity.

Our model uses opponent inhibition but assumes that inhibition
dominates, rather than balances, excitation. The inhibition result-
ing from the phase-nonspecific LGN input depends strongly on
contrast but not orientation and can produce nonlinear effects
similar to the normalizing inhibition of Carandini and colleagues,
although the biological substrate is quite different. For example,
preliminary simulations indicate that one such nonlinearity, cross-
orientation inhibition (suppression of response to a stimulus of the
preferred orientation by simultaneous presentation of a null-
oriented stimulus), arises naturally in our model from the an-
tiphase inhibition (A. Hoffman and our unpublished observations).

Additional nonlinearities include effects of contrast on tempo-
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ral responses. Preliminary results (Priebe et al., 1997) indicate
that the adaptation current contributes to contrast-dependent
temporal phase advance and that the addition of frequency-
dependent short-term synaptic depression (Markram and Tso-
dyks, 1996; Stratford et al., 1996; Abbott et al., 1997; Tsodyks and
Markram, 1997) to our model can largely account for contrast
effects on both temporal phase and temporal frequency tuning in
cat V1 [related observations have been made independently by
Chance et al. (1997)]. Thus, we hypothesize that local rather than
global circuitry can account for contrast nonlinearities as well as
for contrast invariance, although this will require further study.

Developmental and functional implications

The LGN input to simple cells assumed here—a Hubel-Wiesel
model—has previously been shown to develop from correlation-
based rules of synaptic development under simple assumptions
(Miller, 1994). Our model uses cortical connectivity that should
also arise from such rules, as generalized to include plasticity of
inhibitory synapses. Thus our model circuit, in addition to ex-
plaining many properties of cortical functional responses, natu-
rally suggests its own developmental origin: central features of the
intracortical and thalamocortical connectivity in cortical layer 4
may arise together through similar mechanisms of correlation-
based development.

The antiphase inhibition that results from such development
allows cortical circuitry local to a small number of iso-orientation
columns to distinguish the form (orientation) from the intensity
(contrast) of an oriented stimulus. Suppose that spatial phase is
ignored, so that all cortical cells preferring the same orientation
receive the same single component of LGN input, an instanta-
neous synaptic input rate. Then the two input variables of con-
trast and orientation are confounded. An intermediate input rate
might correspond to the preferred orientation at low contrast or
to a nonpreferred orientation at higher contrast. To disambiguate
these, a comparison across cells of all preferred orientations is
needed, to determine for each cell whether it is receiving more or
less input than cells of other preferred orientations. Recent
models achieve this comparison through circuitries in which in-
tracortical inhibition is broader in orientation than excitation
(Ben-Yishai et al., 1995; Somers et al., 1995).

Our model instead takes into account spatial phase and pre-
dicts that the computation in layer 4 is local. If the cell and its
antiphase partners are receiving similar input (Fig. 6B), the
preferred orientation is not being seen, and the cell does not
respond, regardless of stimulus contrast (intensity). If the cell is
receiving input and its antiphase partners are not (Fig. 64), the
preferred orientation (form) is present, and the cell responds; the
strength of its response reflects the stimulus contrast.

This provides a specific example of a possible, more general
principle of cortical organization that should arise from
correlation-based development: a cortical cell should respond to
the difference between its preferred stimulus (call it P) and its
“antipreferred” stimulus (call it P), rather than to the preferred
stimulus alone. By antipreferred stimulus, we mean the stimulus
that evokes an input pattern most anticorrelated with that of the
preferred. A stimulus that is uncorrelated with the preferred
stimulus pattern (i.e., evokes an uncorrelated input pattern),
while partially stimulating the cell, should also stimulate the cell’s
“antipreferred partners” (cells with preferred stimulus P).
Correlation-based inhibition prevents the cell from responding to
this inappropriate stimulus, regardless of stimulus intensity. This
hypothetical principle, that a cell selective for P actually responds
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to “P AND NOT P,” might aptly be termed “dialectical,” in
recognition of the philosophical school that argues that objects
exist and are known only in relation to their opposites (e.g.,
Merleau-Ponty, 1962).

Correlation-based connectivity also suggests a possible devel-
opmental explanation for columnar organization (the vertical
invariance of RF properties). Why don’t inhibitory and excitatory
neurons in a given column take on opposite preferred orienta-
tions [or ocular dominance (OD)]? We hypothesize that inter-
connected excitatory and inhibitory neurons share RF properties
that are shared by both P and P and differ in the RF properties
that distinguish these. Thus, orientation (and OD) is invariant in
a column, whereas spatial phase varies (Freeman et al., 1997),
because the most anticorrelated stimulus pair has identical ori-
entation (and OD) but opposite spatial phase. It will be of great
interest to determine whether such a principle might apply to
cortical representations of other sensory modalities.
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